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Abstract. In recent studies, image or speech recognition, psychology, and eco-
nomics, etc. in real big data have been analyzed by learning systems. It is one of
important problems to approximate an unknown true density function from train-
ing data selected from the true density function independently and identically using
learning models. In a stochastic model, many hierarchical learning models for ana-
lyzing real data have been proposed, and proved to be effective. They are, however,
singular, which classic theories for regular models cannot apply to. Therefore, the
need for appropriate model selection methods for singular models has increased and
several information criteria for singular models have been developed. For example,
singular Bayesian information criterion, widely applicable information criterion,
widely applicable Bayesian information criterion, and cross-validation have been
considered based on mathematical theorems in algebraic analysis and geometry . In
this paper, we consider learning coefficients in learning theory, which serve to mea-
sure the main term of learning efficiency in singular learning models. These coeffi-
cients have an important role in information criteria and are mathematically equal
to the log canonical thresholds of Kullback functions. We show several mathemat-
ical theorems for obtaining these coefficients, and apply these theorems to Poisson
distribution mixture models.

Keywords. learning coefficient, Kullback information, singular learning models,
construction of blow ups

Introduction

Recently, many hierarchical learning models, for example, layered neural network, re-
duced rank regression, the Boltzmann machine, and the normal mixture model, have
been used to analyze real data. These models are singular, which are not classical regular
ones, and thus the need to analyze singular ones has increased.

In this section, we introduce several information criteria for singular models and
their results.

We denote by q(x) a true probability density function of variables x ∈ RN and set
xn = {xi}1≤i≤n as n training samples distributed from q(x) independently and identically.

We first introduce Kullback information K(q||p) for density functions p(x), q(x):
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K(q||p) =
∫

log
q(x)
p(x)

q(x)dx.

This function is a pseudo-distance, because K(p||q) ≥ 0 and satisfies q(x) = p(x), if and
only if, K(q||p) = 0. Also we define empirical Kullback information Kn(q||p) as

Kn(q||p) =
1
n

n∑
i = 1

log
q(xi)
p(xi)

,

which satisfies E[Kn(q||p)] = K(q||p).
Consider a learning model p(x|w), which is a probability density function of vari-

ables x ∈ RN with parameter w ∈ W ⊂ Rd.
In Bayesian estimation, one of our goals of the learning system is to approximate

unknown true density function q(x) from data xn using p(x|w).
Let us consider an a priori probability density function ψ(w) on parameter set W and

the a posteriori probability density function p(w|xn) :

p(w|xn) =
1

Zn(β)

n∏
i = 1

p(xi|w)βψ(w),

where

Zn(β) =
∫

W

n∏
i = 1

p(xi|w)βψ(w)dw,

for inverse temperature β. We typically set β = 1.
Let

Fn(β) = − log Zn(β).

Fn(1) is called free energy. Additionally, Fn(1) is known as the Bayesian criterion[1],
stochastic complexity in universal coding[2,3], Akaike’s Bayesian criterion[4], and evi-
dence in neural network learning[5].

Watanabe [6,7,8,9,10,11,12] proved that

E[Fn(1)] = L(w0)+λ log n − (θ − 1) log log n+O(1)

for learning coefficient λ ∈ Q and its order θ, which provide the learning efficiencies,
where L(w) = − Ex[ log p(x|w)] and w0 ∈ W0 = {w0 ∈ W | L(w0) = minw∈W L(w)}.

By analyzing this relation and using the unique solution to certain equation system,
the “singular Bayesian information criterion” (sBIC) [13] is obtained.

“Widely applicable Bayesian information criterion” (WBIC) [14] is also obtained,
and denoted by

WBIC = − Eβ
w[

n∑
i = 1

p(Xi|w)]



for β = 1/ log n, where

Eβ
w[ f (w)] =

∫
dw f (w)

∏n
i = 1 p(xi|w)βψ(w)∫

dw
∏n

i = 1 p(xi|w)βψ(w)
.

These information criteria are extensions of BIC for singular models.
Next we introduce the widely applicable information criterion [6,7,8,9,10,11,12]

and the cross-validation loss.
We have the predictive density function, i.e., the average inference in Bayes estima-

tion, p(x|xn) = Eβ
w[p(x|w)].

We define Bayes training loss Tn and Bayes generalization loss Gn as follows:

Tn = −
1
n

n∑
i = 1

log p(xi|xn)

and

Gn = −
∫

q(x) log p(x|xn)dx.

Then we have E[Tn] = Gn and E[Gn] = E[Fn+1] − E[Fn](β = 1) for n ∈ N [15,16,17].
Let

Vβ
w[ f (w)] = Eβ

w[ f (w)2] − Eβ
w[ f (w)]2.

Additionally, we define Bayesian generalization error Bg and Bayesian training error
Bt as follows:

Bg = K(q(x)∥p(x|xn))

and

Bt = Kn(q(x)∥p(x|xn)).

Then we have

Bg = Gn − S ,

Bt = Tn − S n

for average entropy S = −
∫

q(x) log q(x)dx and empirical entropy S n = − 1
n
∑n

i = 1 log q(xi)
of the true density function. Value Bg describes how precisely the predictive density
function p(x|xn) approximates the true density function q(x).

We define xn\xi = {x1, . . . , xi−1, xi+1, . . . , xn}. The widely applicable information
criterion [6,7,8,9,10,11,12] is denoted by

Wn = Tn+
β

n

n∑
i = 1

Vβ
w[ log p(xi|w)]



and cross-validation loss is denoted by

Cn = −
1
n

n∑
i = 1

log p(xi|xn\xi)

for n ≥ 2.
Watanabe proved the following relations:

E[Gn] = L(w0)+
1

nβ
(λ+

β − 1
β

ν)+o(
1

nβ
),

E[Tn] = L(w0)+
1

nβ
(λ − β+1

β
ν)+o(

1
nβ

),

E[Wn] = L(w0)+
1

nβ
(λ+

β − 1
β

ν)+o(
1

nβ
),

E[Cn] = L(w0)+
1

nβ
(λ+

β − 1
β

ν)+o(
1

nβ
)

for singular fluctuation ν ∈ R.
Value ν is obtained by theoretically using learning coefficient λ and its order θ as

follows:

ν =
1
2

Eξ

∫ ∞
0 dt

∑
u∗
∫

tλ−1/2eβ
√

tξ(u)−βtξ(u)du∫ ∞
0 dt

∑
u∗
∫

tλ−1/2eβ
√

tξ(u)−βtdu
,

where ξ(u) is obtained by an empirical process Kn(q||p) defined on the smooth mani-
fold using a resolution of singularities, and u∗ denotes a local coordinate that attain the
learning coefficient λ and its order θ.

In this paper, we consider value λ and determine the exact values of Poisson dis-
tribution mixture models [18], which are very useful models with discrete input values
in learning theory. These coefficients are equal to the log canonical thresholds of the
Kullback function mathematically introduced in Definition 1.

In recent studies, we determined the exact values or bounds of several learning coef-
ficients [19,20,21,22,23,24,25,26]. Additionally, in [27,28] and [29], the learning coeffi-
cients for naive Bayesian networks and directed tree models with hidden variables were
obtained, respectively. Drton et al.[30] considered these coefficients of a Gaussian latent
tree and forest models.

1. Main results

Denote constants, such as w∗, a∗ and b∗ using suffix ∗ and define the norm of matrix

A = (ai j) as ||A|| =
√∑

i, j |ai j|2. Set N+0 = {0, 1, 2, · · · }.

Definition 1 Assume that f (w) is an analytic function in a small neighborhood U of w∗

and ψ(w) is a C∞ function having a compact support.
We define log canonical threshold−λw∗ ( f , ψ) as the largest pole of

∫
U | f (w)|zψ(w)dw,

and also define θw∗ ( f , ψ) by its order.



In this paper, we use the notations λw∗ ( f ) and θw∗ ( f ) instead of λw∗ ( f , ψ) and θw∗ ( f , ψ)
respectively, because if ψ(w∗) , 0, then these values are independent of ψ.

Example 2 (1) If f (w) = f (w1,w2) = w4
1w6

2 and U = (−1, 1)×(−1, 1), then λ(0,0)( f ) =
1
6

and θ(0,0)( f ) = 1 since
∫

U |w
4
1w6

2|
zdw =

2
(6z+1)(4z+1)

.

(2) If f (w) = f (w1,w2) = w6
1+w2

1w4
2 and U = (−1, 1)×(−1, 1), then λ(0,0)( f ) =

2
6
=

1
3

and θ(0,0)( f ) = 1 since∫
U
|w6

1+w2
1w4

2|
zdw =

∫
U′
|w′1

6(1+w′2
4)|zw′1dw′+

∫
U′′
|w′′62w′′21(w′′41+1)|zw′′2 dw′′

=
g(z)

(6z+2)
+

h(z)
(6z+2)(2z+1)

,

where w1 = w′1,w2 = w′1w′2 on U′ = (−1, 1)×(−1, 1), w1 = w′′1 w′′2 ,w2 = w′′2 on U′′ = (−
1, 1) × ( − 1, 1) and g(z), h(z) are holomorphic functions.

Hironaka’s Theorem [31] establishes the existence of maps from a smooth man-
ifold to obtain these log canonical thresholds by resolution of singularities. The map
w1 = w′1,w2 = w′1w′2 on U′ = (−1, 1)× (−1, 1), w1 = w′′1 w′′2 ,w2 = w′′2 on U′′ = (−1, 1)×
( − 1, 1) in Example 2 (2) is one of such desingularization maps. However, generally,
because of complicated singularities of Kullback functions, to obtain such maps is very
difficult in learning theory. Therefore, we need to construct several mathematical theories
for the purpose.

Lemma 3 ([22,23,32]) Assume that J is the ideal generated by f1(w), f2(w), · · · , fn(w),
which are analytic functions defined on a neighborhood U of w∗ ∈ Rd.
(1) If

∑m
i = 1 g2

i ≤
∑n

i = 1 f 2
i , then λw∗ (

∑m
i = 1 g2

i ) ≤ λw∗ (
∑n

i = 1 f 2
i ).

(2) If g1, g2, · · · , gm ∈ J , then λw∗ (
∑m

i = 1 g2
i ) ≤ λw∗ (

∑n
i = 1 g2

i ). In particular, if
g1, g2, · · · , gm generate J , then λw∗ (

∑n
i = 1 f 2

i ) = λw∗ (
∑m

i = 1 g2
i ).

Consider the mixture of N dimensional Poisson distributions with H components
and assume the true distribution with r components. An input value of N dimensional
Poisson distributions is x = (x j) ∈ ZN

≥0 and we have

p(x|w) =
H∑

i = 1

a1i

N∏
j = 1

exp ( − bi j)
b

x j
i j

x j!
,

where w = {a1i, bi j|1 ≤ i ≤ H, 1 ≤ j ≤ H}, bi j > 0 and
∑H

i = 1 a1i = 1, a1i ≥ 0.
Also we have the true distribution:

p(x|w∗t ) = −
H+r∑

i = H+1

a∗1i

N∏
j = 1

exp ( − b∗i j)
b∗i j

x j

x j!
,

where w∗t = {a∗1i, b
∗
i j|H+1 ≤ i ≤ H+r, 1 ≤ j ≤ H}, b∗i j > 0 and

∑H+r
i = H+1 a∗1i = − 1,

a∗1i < 0. (We use the values a∗1i < 0, not a∗1i > 0, in order to simplify the following.)



Theorem 4 Consider the ideal J generated by p(x|w) − p(x|w∗t ) for x ∈ ZN
≥0. Then the

generators of J are

H∑
i = 1

a1i

N∏
j = 1

bi j
x j+

H+r∑
i = H+1

a∗1i

N∏
j = 1

b∗i j
x j (x ∈ ZN

≥0).

We have its proof since exp x =
∑∞

n = 0
xn

n!
.

The generators of the mixture of N dimensional Poisson distributions with H com-
ponents and the true distribution with r components are obtained by Vandermonde matrix
type singularity in Definition 6.

Definition 5 Let: [b∗1, · · · , b
∗
N]Q = ξi(0, · · · , 0, b∗i , · · · , b

∗
N) for b∗s = 0 s = 1, · · · , i − 1,

b∗i , 0, and ξi =

{
1 if Q is odd,
sign(b∗i ) if Q is even.

Definition 6 (Vandermonde matrix type singularity) Set Q ∈ N and fix it.

Let AM,H,r =


a11 · · · a1H a∗1,H+1 . . . a∗1,H+r
a21 · · · a2H a∗2,H+1 . . . a∗2,H+r

...
...

aM1 · · · aMH a∗M,H+1 . . . a∗M,H+r

,

BH,N,r,I = (
N∏

j = 1

b
ℓ j
1 j,

N∏
j = 1

b
ℓ j
2 j, · · · ,

N∏
j = 1

b
ℓ j
H j,

N∏
j = 1

b∗H+1, j
ℓ j , · · · ,

N∏
j = 1

b∗H+r, j
ℓ j )t

for I = (ℓ1, . . . , ℓN) ∈ N+0
N and

B(Q)
H,N,r = (BH,N,r,I)∑N

j = 1 ℓ j = 1+Qn,n≥0,

where t denotes the transpose.
Variables aki and bi j (k = 1, . . . , M, i = 1, . . . ,H, j = 1, . . . ,N) are defined in a neigh-

borhood of constants a∗ki and b∗i j.

Set J be the ideal generated by all elements of AM,H,rB(Q)
H,N,r and then its singularities

are called Vandermonde matrix-type singularities.
For simplicity, we assume that

M∏
k

a∗k,H+ j , 0,
N∏

ℓ = 1

b∗H+ j,ℓ , 0

for 1 ≤ j ≤ r and [b∗H+ j,1, . . . , b
∗
H+ j,N]Q , [b∗H+ j′,1, . . . , b

∗
H+ j′,N]Q for j , j′.

We use w = {aki, bi j}i = 1,··· ,H instead of w = {aki, bi j}k = 1,··· ,M,i = 1,··· ,H, j = 1,··· ,N ,
since in this section we always have k = 1, · · · ,M, j = 1, · · · ,N.



Theorem 7 The singularity of the mixture of N dimensional Poisson distributions with
H components and the true distribution with r components, corresponds to the Vander-
monde matrix type singularity with M = 1,Q = 1 and

∑H
i = 1 a1i = 1, a1i > 0.

These log canonical thresholds of Vandermonde matrix-type singularities provide
the learning coefficients of three-layered neural networks, normal mixture models, and
mixtures of binomial distributions[33], which are known as effective learning models and
widely used. This fact shows that these singularities are essential and generic in learning
theory.

Example 8 If Q = N = M = r = 1, then we have

A =
(
a11 a12 · · · a1H −1

)
, B =


b11 b2

11 · · · bH+1
11

b21 b2
21 · · · bH+1

21
...

...

b∗H+1,1 b∗2H+1,1 · · · b∗H+1
H+1,1

.
These matrices A, B correspond to the mixture of 1 dimensional Poisson distributions
with H components:

p(x|w) =
H∑

i = 1

a1i exp ( − bi1)
bx1

i1
x1!

,

and the true distribution:

p(x|w) = exp ( − b∗H+1,1)
b∗x1

H+1,1

x1!
.

Example 9 If H = 2,N = 2, Q = r = M = 1, then we have

A =
(
a11 a12 −1

)
, B =


b11 b12 b2

11 b11b12 b2
12 b3

11 b11b2
12 b2

11b12 b3
12

b21 b22 b2
21 b21b22 b2

22 b3
21 b21b2

22 b2
21b22 b3

22
b∗31 b∗32 b∗231 b∗31b∗32 b∗232 b∗331 b∗31b∗232 b∗231b∗32 b∗332

.
These matrices A, B correspond to the model

p(x|w) = a11 exp ( − b11 − b12)
bx1

11bx2
12

x1!x2!
+a12 exp ( − b21 − b22)

bx1
21bx2

22
x1!x2!

.

and the true distribution:

p(x|w) = exp ( − b∗31 − b∗32)
b∗x1

31 b∗x2
32

x1!x2!
.

Theorem 10 ([23]) Consider variables w = {aki, bi j}1≤i≤H in a sufficiently small neigh-
borhood U of

w∗ = {a∗ki, b
∗
i j}1≤i≤H .



Set (b∗∗01, b
∗∗
02, · · · , b

∗∗
0N) = (0, . . . , 0). Assume each (b∗∗11, b

∗∗
12, · · · , b

∗∗
1N), . . ., (b∗∗r′1, b

∗∗
r′2, · · · , b

∗∗
r′N)

be a different real vector in

[b∗i1, b
∗
i2, · · · , b

∗
iN]Q , 0, for i = 1, . . . ,H+r;

that is,

{(b∗∗11, · · · , b
∗∗
1N), . . . , (b∗∗r′1, · · · , b

∗∗
r′N) | [b∗i1, · · · , b

∗
iN]Q , 0, i = 1, . . . ,H+r}.

The value r′ ≥ r is determined uniquely by Definition 6. Let (b∗∗i1 , · · · , b
∗∗
iN) = [b∗H+i,1, · · · , b

∗
H+i,N]Q

for i = 1, · · · , r.

Set [b∗i1, · · · , b
∗
iN]Q =



0, i = 1, · · · ,H0
(b∗∗11, · · · , b

∗∗
1N), i = H0+1, · · · ,H0+H1,

(b∗∗21, · · · , b
∗∗
2N), i = H0+H1+1, · · · ,H0+H1+H2,

...
(b∗∗r′1, · · · , b

∗∗
r′N), i = H0+ · · ·+Hr′−1+1, · · · ,H0+ · · ·+Hr′ ,

and H0+ · · ·+Hr′ = H. Then, we have

λw∗ (||AM,H,rB(Q)
H,N,r ||

2) =
Mr′

2
+λ

w(0)∗
1

(||AM,H0,0B(Q)
H0,N,0

||2)

+

r∑
α = 1

λ
w(α)∗

1

(||AM,Hα−1,1B(1)
Hα,N,0

||2)+
r′∑

α = r+1

λ
w(α)∗

1

(||AM,Hα−1B(1)
Hα−1,N,0||

2),

where w(0)∗
1 = {a∗k,i, 0}1≤i≤Hα , w(α)∗

1 = {a∗k,H0+···+Hα−1+i, 0}2≤i≤Hα , a(α)∗ =


a∗1,H+α

...
a∗M,H+α

 and

AM,Hα−1,1 = (AM,Hα−1,0, a(α)∗) for α ≥ 1.

Theorem 11 [18] We use the same notation as in Theorem 10. Assume that Q = 1, r = 1,∑H
i = 1 aki = 1, a∗iH+1 = − 1 and aki ≥ 0. Then, the ideal is generated by

H∑
i = 1

aki

N∏
j = 1

(bi j − b∗i,H+1)ℓ j (I = (ℓ1, · · · , ℓN) ∈ {0, 1}N , |I| , 0),

aki(bi j − b∗i,H+1)2 (1 ≤ k ≤ M, 1 ≤ i ≤ H, 1 ≤ j ≤ N).

By Theorem 10, we can see that the case r = 1 in Theorem 11 is an essential part.

Theorem 12 We use the same notation as in Theorem 10.
Assume that Q = 1, r = 1,

∑H
i = 1 ai = 1, a∗H+1 = − 1 and ai ≥ 0.

We have the following:



λw∗ (||A1,H,1B(1)
H,N,1||

2)

= min{N(H − β)+β
2

(0 ≤ β ≤ H − 1),
N(H − β′)+2β′+N

4
(0 ≤ β′ ≤ H − 1)}

=

{
(H+1)/4 if N = 1

(H − 1+N)/2 if N ≥ 2.

2. Conclusion

In this paper, we considered the case when Q = 1 and the elements of matrix A are
non-negative in Vandermonde matrix-type singularities (Definition 6). Theorem 12 de-
termines the explicit values of the log canonical thresholds. These results are related
to Poisson distribution mixture models and also a normal mixture model with identity
matrix variances [23]. Since the log canonical thresholds of Vandermonde matrix-type
singularities have been still obtained partially and many of learning coefficients seem to
be related to such singularities, these results in this paper are useful for obtaining log
canonical thresholds for other cases.

Drton and Plummer [13] have used the learning coefficients from our recent results
very effectively in sBIC. Furthermore, our theoretical and mathematical values will be
helpful in numerical experiments such as the Markov chain Monte Carlo. In the papers
[34,35], Nagata have constructed the mathematical foundation for developing and ana-
lyzing the precision of the Markov chain Monte Carlo method by using our theoretical
values of marginal likelihoods.
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A. Proof of Theorem 12

We use the following theorem in the proof.

Theorem 13 (Method to add variables [26]) Let f1(w1, . . . ,wd), . . ., fm(w1, . . . ,wd)
be homogeneous functions of w1, · · · ,wd. Set f ′1(w2, . . . ,wd) = f1(1,w2, . . . ,wd), . . .,
f ′m(w2, . . . ,wd) = fm(1,w2, . . . ,wd). If w∗1 , 0, then we have:

λ(w∗1,··· ,w
∗
d)( f 2

1 + · · ·+ f 2
m) = λ(w∗2/w

∗
1,··· ,w

∗
d/w

∗
1)( f ′21 + · · ·+ f ′2m ).

Let us consider the generators of the ideals

J =
⟨(

a1 · · · aH
)


bℓ1
11 · · · b

ℓN
1N

bℓ1
21 · · · b

ℓN
2N

...

bℓ1
H1 · · · b

ℓN
HN

 |
N∑

i = 1

ℓi = nQ+1, n ≥ 0
⟩
.



Because we assume that Q = 1 and ai ≥ 0, we can set

J =
⟨(

a1 · · · aH
)


bℓ1
11 · · · b

ℓN
1N

bℓ1
21 · · · b

ℓN
2N

...

bℓ1
H1 · · · b

ℓN
HN

 |
N∑

i = 1

ℓi = n+1, n ≥ 0
⟩

+
⟨
aib2

i j | 1 ≤ i ≤ H, 1 ≤ j ≤ N
⟩
.

By constructing the blowup repeatedly, we have the following:
Set α[i] ∈ {1, · · · ,N} and set bi j = v1 · · · vib′i j for 1 ≤ i ≤ H, 1 ≤ j ≤ N, and set

b′
iα[i] = 1. Then we have

J =
⟨
v2

1a1, v2
1v2

2a2, · · · , v2
1v2

2 · · · v
2
HaH ,

⟩

+

⟨(
a1v1 a2v1v2 · · · aHv1v2 · · · vH

)


b′1, j
b′2, j
...

b′H j

 | 1 ≤ j ≤ N
⟩
.

Set aH = 1 − a1 − · · · − aH−1. Then we have

J =
⟨
v2

1a1, v2
1v2

2a2, · · · , v2
1v2

2 · · · v
2
H

⟩

+

⟨(
a1v1 a2v1v2 · · · v1v2 · · · vH

)


b′1, j − v2 · · · vHb′H j
b′2, j − v3 · · · vHb′H j

...
b′H−1, j − vHb′H j

b′H j


| 1 ≤ j ≤ N

⟩
.

Set



b′′1, j
b′′2, j
...

b′′H−1, j
b′′H j


=



b′1, j − v2 · · · vHb′H j
b′2, j − v3 · · · vHb′H j

...
b′H−1, j − vHb′H j

b′H j


, 1 ≤ β1 ≤ H, a1 = v2 · · · vβ1a′1u1, a2 = v3 · · · vβ1a′2u1,

· · · , aβ1−1 = vβ1a′β1−1u1, aβ1 = a′β1
u1, and vβ1+1 = v′

β1+1u1. Also set a′i1 = 1(i1 ≤ β1). By
Theorem 13, we can assume b′′i1 j is a variable.

Then by setting b′′′i1 j =
(
a′1 a′2 · · · a′β1

a′
β1+1v′

β1+1 · · · v′
β1+1 · · · vH

)


b′′1, j
b′′2, j
...

b′′H j

 we have



J =
⟨
v2

1v2 · · · vβ1a′′1 u1, v2
1v2

2v3 · · · vβ1a′′2 u1, · · · , v2
1v2

2 · · · v
2
i1vi1+1 · · · vβ1a′′i1u1

⟩
+
⟨
u1v1v2 · · · vβ1b′′′i1 j, 1 ≤ j ≤ N

⟩
.

The Jacobian is

vNH
1 vN(H−1)+1

2 · · · vN(H−β1+1)+β1−1
β1

uN(H−β1)+β1
1 × vN(H−β1)

β1+1 · · · vN
H × 1/(v1 · · · vHu1)
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