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In the last two decades, remarkable progress has been done in singular learning machine theories on the
basis of algebraic geometry. These theories reveal that we need to find resolution maps of singularities for
analyzing asymptotic behavior of state probability functions when the number of data increases. In particular, it
is essential to construct normal crossing divisors of average log loss functions. However, there are few examples
for obtaining these for singular models. In this paper, we determine the resolution map and normal crossing
divisors for multiple-layered neural networks with linear units. Moreover, we have the exact values for the
learning efficiency, which is so called learning coefficients. Multiple-layered neural networks with linear units
are simple, however, very important models because these models give the essential information from data of
input-output pairs. Moreover, these models are very close to multiple-layered neural networks with rectified
linear units (ReLU). We show the learning coefficients of multiple-layered neural networks with linear units
are bounded even though the number of layers goes to infinity, which means that the main term of asymptotic
expansion of the free energy and generalization error of singular models are much smaller than the dimension
of its parameter space.

1. Introduction that is, we have the true probability density function

Singular learning models include hierarchical learning machines
such as neural networks, reduce rank regression, Boltzmann machine,
normal mixture models and so on. Even though these models have
been widely used to analyze real data, theoretical analysis have not

XY = exp(=3 1Y = A"V A X)),

1
V2m)H®

Let (X,Y)" := {(X;, Y))}[_, be n training samples selected independently

been developed sufficiently. These models have non-positive Fisher
information matrices and therefore cannot be analyzed by classical
theories (Watanabe, 2009).

For example, let us consider the reduce rank regression model,
which is one of singular models. Let

{w=AD, A®) | AV is an H® x H6D matrix },

be the set of parameters. Assume that the input value is a vector X €
R7Y with probability density function r(X) and output value a vector
Y € R#" given by

Y = AV AP X 4 (noise),
with Gaussian noise. Then, the statistical learning model is obtained by

PICX. Y1) = exp(=3 1Y = AV AP X)),

1
(V2mH®

This model has H® input units, H" output units, and H® hidden
units. Let us assume that the w* = (4*(), A*@) be the true parameter,
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and identically from r(X,Y).
Define the average log loss function L(w) by L(w) = —Ey y[log pl
(X,Y|w)] and the set of optimal parameters W, by

Wy = {wy € WILGwo) = min Lw)} = (A7, A?) | 404" = ADAD),
w'e

Because r(X,Y) = pl(X,Y|(A*D, 4*®)), we have r(X,Y) = pl(X,Y |wy)
for all w, € W,

If the rank of A*1A*@ js less than max{HY, H®, H®}, then
W, is not one point, but its dimension is positive. It is obvious that
the Fisher matrix function (%) at w* = (A*D, A*@) has zero
eigenvalues, therefore, we cannot a/pply classical theories, for example,
model selection methods AIC (Akaike, 1974), TIC (Takeuchi, 1976),
HQ (Hannan & Quinn, 1979), NIC (Murata, Yoshizawa, & Amari, 1994),
BIC (Schwarz, 1978), MDL (Rissanen, 1984), because their methods
need regular conditions such as a positive definite Fisher information
matrix and the unique point minimizing a log loss function.
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In general, let an unknown true probability density function r(X,Y),
and let (X,Y)" := {(X;,Y))}\_, be n training samples selected indepen-
dently and identically from r(X ,Y). Consider a learning model that is
written in probabilistic form as p/(X,Y|w), where w € W c R? is
a parameter. Let @(w) be an a priori probability density function on
a parameter set W and ps,(w) be the a posteriori probability density
function,

1
o) TI, PICX,, Y |w)dw

We then have the predictive density function in Bayesian estimation

ps,(w) = P(w) sz(X,, Y, w).

Prn(X,Y)=/pl(X,Y|w)ps,,(w)dw.

Assume that we have pl((X,Y) = pl(X,Y|w,) for all w, € W, that is,
plo(X,Y) is essentially unique for r(X,Y), where

L(w) = —Ex y[log pl(X, Y |w)],

and

Wy ={w e W|L(w)= min L(w')}.
w'ew

Let G, be the Bayes generalization loss,

Q
Il

n = = / r(X,Y)log pr,(X,Y)dXdY

r(X,Y)
pry(X,Y)

dXdy

—/r(X,Y)logr(X,Y)dXdY+/r(X,Y)log

- / r(X,Y)logr(X,Y)dXdY + Ex y[log :(?’),(Y))/) 1

Exyll og - ’(X y))] is the Kullback function, which is the distance be-
tween r(X Y) and pr,(X,Y). Watanabe (2001a, 2001b, 2010, 2018)
proved the following relation,

E[G,] = L(wy) + ll + o(l),
n n

where 4 is the learning coefficient. In the case of reduce rank re-
gression, the value of A was obtained (Aoyagi & Watanabe, 2005b,
Theorem 2 in this paper). These values are much smaller than the
dimension HOH® + H®H® of parameter spaces. This fact means
learning efficiencies are increased more than regular models, as a
model’s complexity increases.

Let

L,(w)=—— longKX,, Y |w).
Based on the free energy,

R = —goe [ T sz(XpY,-lw)ﬂw(w)dw

= nL,(wy) + - —1 loglog(n) + 0,(1)

F; 10g(n)

for inverse temperature f > 0, which was shown by Watanabe (2009),
we have the model-selection methods, the “widely applicable Bayesian
information criterion” (WBIC) (Watanabe, 2013) and “singular Bayesian
information criterion” (sBIC Drton, 2012). sBIC uses the learning coeffi-
cients 4 and its order 0 very effectively with a fix point equation system
of marginal likelihoods. In addition, the learning efficiency A and its
order 0 of a leaning model give mathematical indicators for analyzing
and developing the precision of numerical methods, such as the widely-
applicable information criterion WAIC (Akaike, 1974; Watanabe,
2001a, 2001b, 2001c, 2009, 2010, 2018) and cross-validation in the
Bayesian estimation approach model selection methods.

The learning efficiency 1 is equal to a log canonical threshold
of a Kullback function in algebraic geometry whose exact value is
obtained using recursive blow-up process (Hironaka, 1964). However,
it is difficult to obtain these thresholds, because we need to determine
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all branches of its blow-up process to obtain normal crossing divisors
and Kullback functions degenerate with respect to their Newton poly-
hedra (Fulton, 1993). Moreover, theories for log canonical thresholds
are not fruitful for the real field, compared with the complex field
or algebraically closed fields (Kashiwara, 1976; Kollar, 1997; Mustata,
2002). Therefore, it is of interest in various fields, even in mathematics,
to obtain these thresholds. In recent studies, we obtained exact val-
ues or bounded values of the learning coefficients for Vandermonde
matrix-type singularities, which are related to the three-layered neural
networks and normal mixture models, among others (Aoyagi, 2006,
2013a, 2019a, 2019b; Aoyagi & Watanabe, 2005a). We have also
exact values for the restricted Boltzmann machine (Aoyagi, 2013b).
Additionally, Rusakov and Geiger (2002, 2005), Zwiernik (2011) and
Drton, Lin, Weihs, and Zwiernik (2017) respectively, obtained these
coefficients for naive Bayesian networks, directed tree models with
hidden variables, and the Gaussian latent tree and forest models.

Our purpose in this paper is to obtain A and 6 for multiple-layered
neural networks with linear units.

In Section 2, we overview the definitions of resolution of singular-
ities and log canonical thresholds, and we show our main results in
Section 3. In Section 4, the main theorem’s proof is obtained, and we
conclude in Section 5.

2. Resolution of singularities and log canonical threshold
We denote constants by superscript =, for example, a*, b*, and w*.

Definition 1. The log canonical threshold for an analytic function F
and a C*® function ¢(w) with a compact support in a neighborhood U
of w*, is defined as

Ay (F, @) = supfc : / |F|* @(w)dw(dw) < oo},
U

where k = 1 over the real field and k = 2 over the complex field.
The value —4,.(F, ¢) is equal to the largest pole of the zeta function
Ju | FI¥p(w)dw(dw)*~! for z € C, respectively. Also let §,,-(F, @) be its
order.

If p(w*) # 0, then denote A« (F) = 4,,«(F, @) and 0,,«(F) = 0,,«(F, ¢)
because the log canonical threshold and its order are independent of ¢.

For ideal J, generated by real analytic functions F,...,F,, in a
neighborhood of w*, define 4,,-(J) = A, (F12 + o+ F2),

Here, A, (J) for ideal J is well-defined by Lemma 1.
Lemma 1 (Aoyagi, 2009, 2010; Lin, 2010). Let J = (F,, ..., F,) be the

ideal generated by analytic functions F,, ..., F, on a neighborhood U of
w* € R?. Also, let G, ...,G,, be andlytic functions on U.

We have
A (G2 +

i Gy.....G, € J.
In particular, if J = (G, ...,

2 2 2
“+ G2) < A (F2 4 oo + F2),

G,,), then we have

A (F 4 o + F2) = 4,0 (G + -+ + G2).

Definition 2. Let C = (¢;;) be a matrix. Define ||C|| as the norm of

C by ||C|| = ,/Z |c,~j|2. Also define (C) as the ideal generated by all

elements ¢;; of C.

Applying Hironaka’s Theorem (Hironaka, 1964) to the function

/ Y ly(X,Y
PhX.1) | /r(X Vlog 20Xy iy,
pl(X,Ylw) plIX,Y|w)
where pl(X,Y|w) is a learning model with a parameter w € W and
plo(X,Y|w) = p(X,Y |wy) for all w, € W,, we obtain the proper analytic
map z from a manifold Q to neighborhood V c W,

K(w) = EX,Y[log

2ky 2k 2k,
12k 2k

K@) =u""uy = - u,
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hy h h
7 W) = u u)? u

where ¢(w) is an a priori density function, (u,, ..., u,) is a local analytic
coordinate system on U C Q, and k, ..., ky, hy, ..., h; are non-negative

integers. Then, we have
/ |[K(w)| ™ pdw = / |K (' @)™ p(r@)r’ (w)du.
14 (o]
Therefore, the log canonical threshold, i.e., the learning coefficient is

) o hi+1
A =min min
U 1<j<d 2k/-

B

and its order

h;+1
6 = max Card{; : = A},
u ij

where Card(:S) denotes the cardinality of a set .S.

3. Multiple-layered neural networks with linear units

Define matrices A® of size H® x H¢*D for s=1,..., L,
AY = (@), (1 <i < HY 1< < HOD),

Let W be the set of parameters
W={w={AD} o, | A isan H® x H6*) matrix }.

Denote the input value by X € R¥ D with probability density function
r(X) and output value Y € R¥ Y for the multiple-layered neural
network with linear units, which is given by
L
Y = HA(S)X + (noise),
s=1
with Gaussian noise. Consider the statistical model
L
—L—exp(2 1Y - [ 4V xI2),
(V2r)H® 20 A

pl(X,Y|w) = pl(Y|X, w)r(X).

Y X, w) =

The model has H“*D input units, H) output units, and H® hidden
units in each hidden layer. Assume that p/(X,Y) is essentially unique
for r(X,Y), and that

L
1 1
(Y |X) = ———— exp(—=||Y = [ ] 4*® x1?),
plo(¥1X) — exp(=5 1:[1 %)

(V2x)

plo(X,Y) = ply(Y | X)r(X),
where
w* = {A") o €W,

This is the over-parameterized case. Moreover, assume that the a priori
probability density function ¢(w) is a C*— function with compact
support W, satisfying @(w*) > 0. Then, the A for the model corre-
sponding to the log canonical threshold, denoted as A, (|| Hle AW —
HSL=1 A*®)||2), and its associated order, denoted as 6, are as follows.

Definition 3. Let r be the rank of [~ A*® and M® = H® —r for
s=1,...,L+ 1. Define M C {1,..., L+ 1} such that

¢ = Card(M) — 1,
M={S,....841}

M) < MY for S; € M and s ¢ M,
7+1

Z MO > ¢ MY for s e M

k=1

£+1

Y MS < 2M© for s ¢ M.

k=1
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Let M be the integer such that

41 Mo
M—1< =kl <M,
4
and
£+1
a= Z MO — (M - 1)¢.
k=1
Theorem 1. We have
1= -2+ r(HD + HUI+D) + a(t — a)
B 2 4¢
£+1 4 1(S))
M
_Z - 1)(ZJ=1 J 2+ 1 2 M M)
4 4 -
1<i<j<f+1
—r? + r(HY + D)
h 2
+a(f4;a)_f(f4—1)(M+a;f)z+% MO A
1<i<j<f+1
2+ (HD 4 gAY
S A LS L v R N
2 4
¢ -1 —
A G VYV et 2 VO > MM
4 4 L~
1<i<j<f+1
and
0=a —a)+1.

Remark 1. If Card{s | M® =0} = 1, then we have

M= (s | M® = min{M* | M) >0}, or M® =0}.

If Card{s | M® =0} > 1, then we have

M={s| M® =0}.

—r2+r(H(]2)+H(L+I)) and

Some calculations show that for both cases, A1 =
0=1.

Example 1. If M = M@ = ... = MUI+D_ then, we have 7 = L, the
integer M such that M — 1 < %M(l) <Manda=(L+1)MD - (M-
VL.

We have
—p2 (¢Y] _
re+2rH a(L a) L+1 (12
A= M
2 + 4L + 4L ( )
and
0=a(L—a)+1.

Fig. 1 shows that the curve of 4 and 6, when r = 0, M) = 100 and
L=2,...,120 in Example 1.

Theorem 2 (Aoyagi & Watanabe, 2005b). In the paper Aoyagi and
Watanabe (2005b), the learning coefficients for the reduced rank regression
model which corresponds to L = 2 in Theorem 1 were obtained. We used
the following expression. Note that H®) = M® + r.

(1) FHO+r < HO+HO, HO4r < HO+ HO, HO4r < HO 4+ HO
and HO + H® + H® 4+ r is even, we have

CM={123), 5 =1,5,=2,5=3¢=2,

3 M
« MO < 2'=‘—fors= 1,2,3,
3 MU»)
. M=Z’:'T, a=2,
c0=1,

3 S
—2 4+ r(HO + HO) I(Zj:] M)
2 2 2
+ 1 Y MM

1<i<j<3

A= )?
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Fig. 1. The curves of A and 0, when r =0, M =100 and L =2,...,120 in Example 1.

—(H® 42— HO? - HO? 4 2(H® + HHD
B 8
2H? +r)H® + 2HOHO)
+ .
8

2 FHO+r < HP+H®, HO+r < HO+HO, HO4+r < HV+H®
and HY + H® + H® 4+ r is odd, we have

e M={1,23}, 8, =1,85,=2,8,=3,¢=2,
2

3 M)
- MO < _2,:12 fors=1,2,3,
3 MSD41
e M =" > ,a=1,
c0=2
2 4 (HD 4 HO
o A HTAHT) 1
2 8
3 ()
MY
_%(ZFIT)z +% Y MM
1<i<j<3
—(H® 42— HO? — HO? £ 2(H® 4 pHD
B 8
+2(H<2> +rH® +2HOH® +1
5 .

3) FHD + H® < H® 4+ r, we have
cM={1,2}, §,=1,8,=2°¢=1,
- MO <Y M fors=1,2,
C MO > T M,
s M=3 M), a=1,
c0=1,

-2 +r(HD + HO) .

2

HOHLO _ HOpr 4 HO
2 .

A= Lyop@
2
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@ If H? + H® < HO 4+ r, we have
cM={23),85=25=3¢=1,
« M® < ZJZ-=1 M for s =2,3,
2 s
- MO > ¥ M),
M=% M%), a=1,

co=1,
2 1 3
g2 TPArHDHHS) 106
2 2
HOHO® _ HOp 4 HOp

2
(5) f HO + H® < H® 4 r, we have
e M={1,3}, 8 =1,8=3¢=]1,
- MO <3 MSD fors=1,3,
2
- MO > ¥ MSD,
o= 32 S
M—ijlM(J,a_l,

co=1,
g2 TP HDHHS) 1 )6
2 2
HOHO®
-1

4. Proof of main theorem
Define E, be the identity matrix of size s.

Lemma 2. Let A = (a;;) be an h; X h, matrix of variables with rank r,.

A A . .
Let r < r| and define A = < Al A2 >, where A, is a regular matrix of
3 4
size r X r.
) ) E, O
Then, there exist regular matrices Q, = FE E and O, =
3 hy—r

E F.
< ¢ 2 ) such that

0o Ehz—r

A (0]

AQ, = ! ,
Q140 < 0 G )
with rank(C,) = r — r.
Proof. Because A, is regular, let Q, = E, o Then

. 1 gular, 1= —A3A1‘1 E, _, . >

A A,
Q 4= < : N >
! 0 —A3AT Ay + Ay

We transform the variables A, to C; = —A3A1‘1A2 + Ay, to obtain

A A
A= .
o < 0 G >

E, -47'A
LetQ2=< O’ E,: 2 ),thenwehavteAQ2=< /2)] g >
=T

We transform the variables A4, and A; to F, = —A7'A, and F; =
—A3A7!, respectively. Then, we have

E, o
o=(% &)
! F'§ Ehl—r
E, F.
o= ( 5 ),
2 o Ehz—r
which completes the proof. []

Lemma 3. Let C, D, P and Q be an h X h, matrix, an hy X h, matrix,
an hy x h; matrix and an h, X h; matrix, respectively.
Then, we have the followings.

(1) (PC) c(C). (CQ) c(C).
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(2) (PC+ D)+(C)=(D)+(C).
(3) If hy = hy, h, = hy and P, Q are regular, we have

(PC)=(C), (CQ)=(C).

Proof. Since all elements in PC are linear combinations of those in C,
we have (PC) c (C). Therefore,

(PC+D)+(C)=(PC+D)+(PC)+(C) =(D)+(PC)+(C) = (D)+(C).

If P is regular, we have (C) = (P~! PC) c (PC). Therefore, we have
(PC) = (C). The same argument holds for Q as well. []

Let the matrix A®) be in a neighborhood of A*® of rank r. In
considering Hf=1 A® in a neighborhood of a matrix of rank r, we
have r® > r. By Lemmas 1 and 3 (3), we can assume Hle A —

(5 3)

. . E (0]
Theorem 3. There exist regular matrices P, = ( " > and
F o Eha.,
E F
P = r 2 such that
o E HL+D _p

L
C 0]
Py( A(S))P2=< ! L ; >
I 0 ML

where C, is in a neighborhood of E,, rank(C®)) is r® —r, and [T", €© is
in a neighborhood of O.

A 4O
Proof. Let AV = < A(ll) A<21)
3 4
E, 0O
O O

>, where A(ll) is a matrix of size r X r.
Because Hle A — ( ), we can assume that rank(A(1'>) =r.

: . (1) E, 0
By Lemma 2, there exist regular matrices QI = W
F. E HO_p

(1)
and 0" = E B such that
O Ego._,
(1)
W a0 _ [ A o
A = .
Ql Q2 < lo) Cil)

Assume that we have Q| =
( E, F,
o EH(S-H)_,
K
c o
o)« A(”)Q;:( Lo )
srzll o Hs:l C(S)

where C] is regular.

E, 0
and Q! =
< Fy  Eya., ) 2

> such that

A A
Let A’S+D = Q’2‘1A<S+1) = < ,1 f ) Then, we have
A3 A4

S S
Qll (H A(s))A(S+1) — Qll (H A(:))Q/ZAI(SH)

s=1 s=1

1 Al Iy
_ < ClAl CIAZ )
- S S :
Hs:l C(S)Ag Hs:l C(S)Aéll

)- (5

E,
B !
ecause Q < 0
( (0]

0] .
o ) We can assume C{A’l is

regular. Let O =

S (S)A’(C,A/) 1 ). Then,

con, ) |

Epa_,

Q//Q/ (H A(s))A(S‘-H)

s=1

( cA Cl4,
S —1 S
o Il COALA AL + T
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We also transform the variables A} to CS*D = —A’3A’l‘1A’2 +A), to
obtain
S
C'A C'A!
0" (TT A9V A+ = 14 142 )
0] Q,(E ) R
E _A/flA/
Let Q;’ = r 1 72 ), then we have
O Eys+y_,

S
C'A! (0]
1" A N AS+HD) A1 _
Q]Q](HIA“)A * Q2—< o' 5 co )
5= s=

We transform the variables A’ and Fj to F” = A’ IA’ and F” =
H;— C(S)A/ (oD 1 respectlvely Then, we have

"l E’ o
Ql Ql - F" E
3 HO—r
"
Q” — E’ FZ
2 O  Eysao._,

which completes the proof by induction. []

By Theorem 3, we have

L E, 0O C 0 E, F
a([a- (5 8)n (6 o) (2 £h)
_ (C,-E, -F
_< -5 HSL=1C(5)—F3F2>'
By Lemma 3,

L L
. C,-E -F,
(149~ A*<”>=<< r Ok >>
511 H -F [l CY-FFR

s=1
L
=(Cy = E) + (B)+ (F) +([] ¢“).
s=1

Since A,:(C; —
r(HD —r)
2

F(HIAD —p)
2

2
Er> = %’ 'lw*<F2> = and Aw*<F3> =

, we have

. 2+ r(HY + HEHD —2p)
A (H AG) _ HA (V)> > + Ay <H C(S))

s=1 s=1 s=1

-2+ r(HD 4 HUIAD)
= > + ﬁw*(H c®y.

s=1

Let M® = H® —rfors=1,...,L+1.

Theorem 4 (Method for Determining the Deepest Singular Point (Aoy-
agi, 2013a)). Let Fy(wy,...,wy), ..., F,(w;,...,w,;) be homogeneous
functions of wy,...,w; (1<j < d). Also, let ¢ be a C* function such
that (0, ...,0, w}fﬂ,... d) (p(wl,...,wZ) and ¢, is a homogeneous
function of wy, ..., w; in a small neighborhood of (0, ...,0, w;fH, e w;’;).
Then, we have

m) @) < ﬂ(w wH,.‘.,w;)((Fl’~"’Fm>’(/7)~

By Theorem 4 in the case where ¢ > 0, we can set r¥) = r for
s = 1,..., L, without loss of generality. Note that if ¢ > 0, the degree
of ¢ is 0.

Define for s =1,...,L,
() — () ; () ; (s+1)
C¥V=()A<i< M9, 1<j <MY,

and consider the log canonical threshold of || HSL= L CY2.

We prove the main theorem by developing blow-up method along
submanifolds to obtain log canonical thresholds, i.e., learning coeffi-
cients. We use a recursive blow-up process.

Define the numerical sequence by

M(S)=min{M® | 1<s< S}
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for S=1,...,L+1. Let

(1) (L)
Tgp=(g)tg))

Definition 4. For two vectors T = (¢, ...,¢;)and T' = (¢, ... ,t’L) e REL,
denote

T<Tift; <1\,....,1p <7},

and

T<Tift;<f,...,t <, and T #T".

(Inductive statement)
Let us prove the following inductive statement for J > 0 and S > 1

L
)\ — (d; (s)
(A) (gc ) = (diag(b, ... bM(S))( o D, > H ),

s=S5+1
where diag(by, ..., by s)) is a diagonal matrix of size M(S) x M(S).
Let D; =(d;;) for J +1 <i < M(S),J +1 < j < M) be a matrix
of size (M(S) — J) x (M®S+D — J) and

by =1
b= ] b =1, M(S),
(bl g=i—1}
L M® pmG+h S—1 M(s+1) . I 1
s) M,
[T TT o = 01 T ot an o T2 s
s=1i=1 j=1
M(S) MES+D L M® pls+D
([T T aap(TT TT T ae)
i=J+1 j=J+1 s=S+1 i=1 j=1
I = min{tsk 11<8 <L},

for1<s<S—1,1<k<M(s+1),

<S) 1<S’<L}—I(SS,>(, for 1 <k<J,

Tg = min{tg
by a blow-up process.

Moreover, we have
(B) Tx,k < Ts’,k” or Ts,k > T_y’,k”

M(s+1), if 5,5 <S8,
J, if s=S5,5=S.
(End of the inductive statement)
t(sk) are defined, updated and used to demon-

for lss,s/gs,lsks{

Inductively, T}, and

strate that u,, is composed of b, when ti‘? <i-1, and 4 is expressed

(S)’s The relations (B) is used to obtain the value 6.

by one of ¢
The above is obvious for S =1 and J = 0, where the right side of

Equation (A) is the same as the left side. From now on, we will consider

Case 1: by =byyp = =bypybypye1 # by
Case 2: by, =byyp = =bpys)-
Case 1

Assume that

by =byp=-= bJ+lebJ+Jl+I # bJ+J1’

thatis, {7, |7, =i}=¢fori=J+1,....J+J, - L
Fix ug, such that 7, =J +J, and T, , < Ty s for iy, =J + Jj.
Construct the blow-up along the submanifold

{dy=0G=J+1,... . J+J,j=J+1,... M5 u =0},

Case 1 (1)
Consider instances in which

dJ+l,J+1 dJ+l,J+2 dJ+1,M(5+1)

dJ+Jl,J+l dJ+Jl,J+2 dJ+Jl.M(5+”
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d}+1 J+1 d}+1.J+2 d}H,M(sm
= “s.k M . :
d.,I+J1 J+1 d/J+J1,J+2 d/J_,.Jl_M(SH)
T AL S
b_l/+1 - s,ka-H
Let :

b‘l[+‘]1 = us,ka+Jl
M = Mg+, (MSD - ),

Because {7y | Ty =i} =¢fori=J+1,....,J +J; -1, that is,
fgp <Joriy,y>J+J,and T, < Ty, foriy,, =J+J;, and we

therefore have
Ts,k < Ts’,k’ or T:,k > Ts’,k’!

M(s+1), if s'<S,

for1§s’sSand1§k’s{ 7. oSS

Again, let b), M/ be b;, M, and we have the inductive statement
with the number of elements in {uy s | Ty = J + J;} decreased by

one.

Case 1 (2)

Consider instances in which

dJ+l,J+1 dJ+1,J+2 dJ+l,M(S+1)
d.l+.ll,.l+l dJ+.Il,.I+2 dJ+Jl,M(S+1>
! !
1 dJ+],.I+2 dj+1,M(S+l)
=Ug gyl
! ! !
dJ+J] J+1 dJ+.l|,.l+2 dJ+Jl,M(s+1>
and

_ !
Usp = US J41Ug )

G 0 _
IZVS)J+1 _lf’sk,l(; b (L) .
+ — 7 —
ts T4 T sy T ’s J+1 T =Jis=J
/
Letd Yrai —”s,1+1b1+1
blM(S> =g yr1bus
— S+1
MYy, =M+ J(MSHD — ),

Because {7y | Ty =i} =¢fori=J+1,....,J +J; -1, that is,
fgp <Joriy,y>J+J,and T, < Ty, foriy, =J+J;, and we

therefore have
Tsyp1 Ty ot Tg iy 2Ty s

M !
fOflSs’SSandlsk’g{ M(s+D, if s <,

J, if §=S8.
Define regular matrix Q
! ! !
dJ+1 J+2 _d1+1,1+3 _dj+1,M(S+1>
0 1 0 0
o=|o0 0 1 0
0 0 1
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and transform the variables introducing

1

"
dJ+2 J+1

"
dJ+3 J+1
"no_
DJ - "
J+J1J+1

"
J+J 41,0 +1

"
dM(S) J+1

1

’
d.l+2,J+l

- ’
J+JpJ+1

dyyy+1.041

dpr(s).7+1

(S+1) _
Let CJ =

form the variables

Cria.1

(S+.1)
M(S“),l

(S+1) 1(S+1)
C; to C;

0

"
d.l+2 J+2

"
d1+3 J+2

"
J+J 42

"
dJ+J| +1,742

"

dM(S) J+2
!

diiire

d1+11+2
’

J+JT+2

dyvi+1042

dys)r+2

(S+1)
J+1,1
(S+1)

S+
J+1,2
(S+1)
J+2.2

(S+‘1)

Define regular matrix P

1 0O 0 0
bJ+2dH 1 0 0
’
AR AENES
b‘//+3 "
P= -y=d;;,, 0 1 0
J+1
v
MS) 1
Y dM(S)J+1 0
J+1
and let
1 0 0
" "
0 dJ+2J+2

"o "
D' = 0 d

0 d/l

M(S).J+2

We then have

J+3,742

M(S+l) 2
using C;

J4+2,M(S+D

"
s mes v

"
M(S),M(S‘*'])

0

"
JH2,M(S+D

"
s s

"
d.I+J1,M(5+1>
"
J+J+1,MS+D

"
Dprs)msen
!
4 o1 ps+n

’
dJ+2,M<S+1>

!
dJ+J1 ,M(S+D)

dJ+J,+1,M(S+U

dM(S)4’M<S+1)

(S+1)

J+1,M(S+2)
(S+1)

J+2,M(5+2)

(S+1)

MS+D) A(S+2)
-1 S+
=07 C;

I(S+1) _

and trans-

Pdiag(by,, ... b5 Dy CY cS+h
= Pug g diag(t! sy, .. by ) D CHHY
= ug y, Pdiag®' ;.. ..., M(S))D” /(S+1)
= ug ypdiag® yiq, e M(S))D‘,],,C‘l,(s+l),

Again, let b/, M’k,d.”.’,c.’. be b;, M . d;;,c;;
S. ij ij 5 J? T
If J+1 < M(S+1) = min{ M(S), MS*D} then we have the inductive
statement with J increased by one.

If J+1>M(S+1)=min{M(S), MS*tD}, then DY =(1,0,...,0) or

D’J” = (1,0, ...,0)" with r the operation of transposition. Therefore, we
have

L L
(H CW) = (diag(by. . . byibyrs - s bag(s1)C" T H W),

s=1 s=5+2
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S+ S+ (S+D)
1 1 I 2 1,M(S+2)
5+ 5+ 3+
2,1 . 2,M5+)
1S+ — (S+1) <S+l) (S+1) .
where C'5*D = ) Cry F M) , which

(S+1) (S+1) 5HD
JHLI T+12 a1, M)

(s+1) (S+1) (s+1)

CMs+n1 CM(s+2 M(S+1),M(S+2)

is the inductive statement with S increased by one.

Case 2

Assume that

bypr =byp =" =bys)

that is, (7, | T, =i} = fori=J+1,...,M(S) - L.

Construct the blow-up along submanifold

{dy=0,G=J+1,...,M(@S),j=J+1,... . MSt))

Consider instances in which

divigrr disie dyi1 ms+n
dys)ar  dms)a2 dyr(s), M+
!’ ’
1 dJ+1 J+2 d1+1 M(s+1)
= Us. 41 : :
dl d/ e dl
M(S).J+1 M(S).J+2 M(S),M(S+D)
(i) _ . . _
tfs)“l l(ws(l]?_l) (i= I(L) LS=1)
+ 7 —
ts T4 T s g T ’s J+1 =Jitggn=J

/
Let d by =lssabrn

blM(5> =usrr1bucs)

’ — _ (S+1) _
MY = (M(S) = DMSHD - ),
Because {iy v | Ty =i} =¢fori=J+1,...,

Ty < J or iy = M(S), we have

M(S) — 1, that is,

Ts g1 2Ty,

M(s+1), if

forl<s’<Sand 1<k < .
J, if

Define regular matrix Q

! ! ’
1 d.l+1 J+2 _dJ+l,J+3 _d1+1,M<S+1>
0 1 0 0
o0=]0 0 1 0
0 0 1

and transform the variables using

1
"
dJ+2 J+1

"

"o
DJ - J+3.J+1

dl/

M(S),J+1
1

!
dJ+2 J+1

!
dM(S),J+1

0
"
dJ+2 J+2

"
J+3,J42

"

dM(S) J+2
!

A1 s
!

dyir im0

!
dM(S),J+2

!
dM(S)’M(nS‘+1)

"
4y s

"
d1+3’M(S+1)

!
dJ+1.M(S+1)

d/
J+2,M(S+D
0.

0

"
M(S).MES+)
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(S+1) ST (8D
J+1,1 J+1,2 J+1,M(5+2)
(S+1) (5D REE)
Let C(JS+1) - J+2 1 7422 €142, M+ and trans-
(S+1) (S+1) C(S+1)
M+ | M(S+D 2 MS+D, M(S+2)
form the variables C;SH) to C}(SH) using C}(SH) = Q“C§ o,
Define regular matrix P
1 0O 0 0 - 0
b‘// 2 g
_ 24
b’J | dJ+2 J+1 1 0 0 0
b/./ 3 g
— — I+
P= o dJ+3,J+1 0 1 0 0
J+1
v
M(G)d// 0 1
T M)+
and let
1 0 0
" "
0 dipypm dJ+2,M(5“)
" =| o a4 d" _ < 1 (0] >
;= J+3,J+2 JH3MEHD T ’
’ 0 Dy,
0

" "
dM(S),J+2 dM(S).M(SH)

We then have

. S+1
Pdiag(by ;. ... bys) D, CF
. S+1
= Pug gy diag(t! sy, .. by ) D CHHY
. /S+1
= uS,J+1Pdlag(b,J+1’ s M(S))D ( k

D/r/c/(5+l)

uSJHdiag(b/JH, ey M(S))

Again, let b, M/, d] ¢, be b;;, M;;.dyj.c;

IfJ+1 < M(S+1) = mm{M(S) ME+DY, then we have the inductive
statement with J increased by one.

If J+1> M(S + 1) = min{ M(S), MS+D}, then D' =(1,0,...,0) or

D’J” =(1,0,...,0)". Therefore, we have

L L
S _ . / / 1(S+1 S
(T c®y = (diagb, ... .5y, 10 o by 50 )CS T €
s=1 s=S+2
(S+1) C5+D (S+1)
L1 12 1, M(5+2)
5D S+ (s+1)
where C/(S+D) — o G2 2 M(s+z> | which
C(s+1) C(s+1) C(s+1)
M(S+1),1 M(S+1),2 M(S+1),M(S+2)

is the inductive statement with .S increased by one.
We finally have the inductive statement for S = L + 1,

L
(H CW) = (diag(by, ..., bpri1))-
s=1

Candidates for the log canonical threshold of || ]'[SL:1 CY9||2 on this
local coordinate are
1. -
3 min{M,,,t,, =0}
and

L N R 4
My = (MO =M@ =60+ Dt = (MU =i,
=
Define 7, H; and S; such that

H e {,<1> (L>}

14
M, =(MSD = H)Y(MSD - H))+ Y
j=2

H; | — H)(MS#1) — H)),
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where S; < S;,y, H; < H;_, H; < M(S;,,) and H, = 0. For every T,
we have such sequences (H;) and (S;).

Let F; = H, | —H;+ M~ for j=2,.
H,. Then, we have

..,¢and F; = M©D 4+ M52 —

Jj+l1
H;=H; |- F+MYS+ =H, - Z(F, MGy = — ZFI+ZM(SI)
1=2 I=1 I=1

Because H;_, >0and H, =0, we have

F, = MSr0 >0,
£+1

Z F + Z MSD =

Also, we have

-1 4
Fp=MSe) == F+ 3 MS) >0,
I=1 I=1

and

M, = (F, — MS))(F, - M(Sl))+Z(F M<Sm>)(ZF, ZM(S'))
=1 1=

£-1 £-1 ¢
= Z(F M@H))(ZFI ZM(Yl))+( ZF + ZM(Y))M(YM)
j=1 =1 =1 j=1 j=1
+1
= Z F?— (Z M(Sk>)(ZF)+ Z FF, + Z MSO pS)
1<i<j<t-1 1<i<j<t+1
£+1 £-1 £+1 f+l
M(Sk) 22 M(5k> M(Sk)
= Y (F - &&= 24 F— (0 - (2= ——y
Z( ) ; - € ===
£+1 £+1 £+1
MO MG
() k=1 k=1
—(ZM k>2F+ Y = - FE——)

I<i<j<t-1

“-2 ZZL‘ MO0 e =) T4 M

¢ i 2 ¢
j=1
+ z MS) M)
I<i<j<t+1
-1 £+1 £+1 £+1
M S M S M S
= D -2+ Y (F- ), - ==
Jj=1 ¢ I<i<j<t-1 4 ¢
£+1 Sk
£ -1 - M@k
_ (2 ) Zkflf 2+ Z MO prS)
1<i<j<f+l
f+l M(gk) £+1

==y —(ZF——

P+ Y MEI M),

I<i<j<t+1

Z M(S,))Z

=
=5 Z

j=1 Jj=1
A Z“‘ )

T2 14

S S
Therefore, if MSk) > S=— or MS (@ —1) > i MK, we
can set F,_; = M¥) to minimize M.

Lemma 4. Let# and 0 < a,b < ¢ — 1 be natural numbers and let

AB) _ L

7 b(%)2+(f—1 b)(- —)2+(b & _w¢-1-n2 )2

Then,

min{A|b=0,..., -1} = A(a—1) = A(a) = al (¢ — a).

Proof. We have
A(b)  b(f=-a)+ (€ —1=-ba’>+ (B —a)— (£ —1-ba)’
Iz Z '
and
0A(b)
b
Therefore, we have established the proof. []

= (¢ — a0 —a+2(W(C —a)— (¢ —1-b)a){(£—a)+a} = £>(1+2b—2a).
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Define ¢, M, M, S and q as in Definition 3.
By Lemma 4, we have

L
2o T ™1

s=1

7+1 (S;)
oy
- al —a) (- 1)(Z/=1 ! Y+ Z MO AS)
2¢ 2 4 1<i<j<f+1
e DAl Y MM
2¢ 2 ¢ 1<i<j<f+1
- -1 _ —7)?
el A G VRS XA YR i 2 P N VED VT
20 2 ¢ 4 1<i<j<tf+1
-1 - !
S A B S Gl Py VE NG LAY O > MM
2 2 Z Ll
<i<j<l+1
Let
Jj+1

H, = ZM(S’)—jM, forj=1,...,a,
=1
j+l

A = ZM(S')—aM—(j—a)(M—l), forj=a+1,....2,
=1

and
Jj+l
1) = ZM(S/)—j(M—l), forj=1,....¢—a,
=1
j+1
1) = Y MS)—(f—a) M —-1)=(j—C+a)M for j=¢—a+1,...¢.

=1
Then, we have H, = ﬁ; = 0. Moreover, let 7 and 7’ be the
vectors corresponding to (H,) and (H 7, respectively. That (i) T and
T’ correspond to 4, and (ii) T has minimum one and 7’ has maximum
one, are obvious from Definition 4.

Note that since M) < M — 1 if a < ¢, we have

A = M)+ Y
MODEMS; 1)

ORI

MODEM(S;4)

(MBS — M) < M(S;,), forj=1,....a,

A, (ME) —(M = 1)~ a < M(Sj,),

forj=a+1,...,7,

H = MSLp+ ),

MSDEM(S;11)

(MSD — (M = 1)) £ M(S}41),

forj=1,...,¢ —a,
(MSD — (M = 1) = (j — £ +a) < M(S}4),

=
I

[ =MESL Y
MSDEM(S41)
fora<?,j=¢-a+1,....¢,

(M) — M) < M(S},),

M)+ Y

M(S/)#M(SH_])
fora=¢,j=1,...¢.

Also we have I:II’ > FI; > > I:I; =0, and I:II’ > ﬁé > > I:I;, =0.
For obtaining the values 0, we prepare the following Lemma 5.

)] (L)

Lemma 5. If the vector T, ; = (ts’k, st ) satisfies

T<T, <T

agd iiff, (glj), (lSj) which corresponds to T, ;. satisfies H;_, —Hj+M(Sj+l) —
57D S S — p 1 or M, then, T, corresponds to A.

s.k s,k s,k

Proof. Because T < T,, < T’ and H, = H), = 0, we have H, = 0.
Therefore, the number of elements of {j : H; | — H; + M®+) = M} is
aandthatof (j : H;_, —H;+ MS+)=M-1}is¢-a. [
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Lemma 6. We have

0=a —a)+1.

Proof. Given ¢
T,

S,

s,k

(S/+1_1) —

=Hj, then by Lemma 5, the number of vectors

P corresponding to 4 is less than the sum of the number of the set

ufz‘ll{H tH; <H<Z ﬁ;}. We have the number of the set {H : H; <

HSH/’.} as

min{a,Z —a} + 1,

min{a,? —a} + 1 + max{a,? — a} — j,

j+1, if j<min{a,¢ —a}
if min{a,Z —a} +1 < j < max{a,¢ — a}

if max{a,/—a}+1<j<?.

Because J is increased by one for Case 1(2) in the proof, we have
6 < a(? —a)+ 1. Finally, by using T ,, we construct the local coordinate
for @ = a(£ — a) + 1 as follows.

Let y be A/ = M(S;,)), (j <7) and A} < M(S,,).

Define

M S+1), S<s,

) _ -

tip =91 k-1, S=s, (€9)]
0, S >,

fors< S, -1,
MS+1), S<S,-1,

) }:Ij_l, S, -1<8<8;,,-1,j<jj

tor =9 Hj-1» S, —1<8<s, 2)
k-1, S =5,
0, S > s,

for §; —1<s<S8; .- Lk<H_+1,j,22,

M(S+1), S<s,
5 _ k: 1, S=s, @
s.k I{jo_l, s<S< Sj0+1 -1,

HJ’__I, S =1<8<8; - Liji>jo

for Sj,—1<s < Sj—Lk2 H _ +1jo22.(5.k) # (Sy41 = LH) + 1),

r<5)={ M(S+1. S <s. . @
sk a_,. S;-1<8<8;,-Ly+1<j<¢
for s =S, —1.k=H +1,
MES+1)., S<S8,-1,
Y, MG —max{j — jo +a,0}M —min{j — 1, jo —a — 1}(M — 1),
S, -1<8<8,-12<j<
T ME) —aM ~ (jo — a)(M — 1),
%) = S —1<8<S; -1,
T M) = (= jo = 1+ @M = (jo — )M = 1),
S, —1<8<8, ~Ljg+2<j<jo+(@-a)+1
Y MS) —aM —(j—a—1)(M - 1),
S, —1<S<S-Lj2jy+@-a)+2,
)

fors = Sj ~1,k=1 =32 M) —aM —(jo—1-a)(M-1),0 < a < jo—1,
k# H _ +1,and
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MS+1), S<8-1,
Y, M) —max{j - j, + «,0}M —min{j - 1,jo —a—1}(M - 1)
S, —1<8<8,, 1,25/ <j—1
T ME) — (@ = DM = (jo - a)(M — 1),
S, -1<8<s,
X0 M) —aM — (jy—a—1)(M - 1),
s<S<S - L
Y MO —(j—jo+ M = (jo—a—1)(M - 1),
S, —1<8S<S8,,—Ljg+1<j<jj+@a-a
T ME) —aM —(j—a-1)(M - 1),
S, —1<8S<S,—Ljizjg+@-a+1,

8 _
ts,k -

(6)

for S; =1 <s <8, —1k=1= T MO —aM —(jo—1-a) (M~ 1),
O<a<jo—lk#H  +1.

We construct the blow-up process with T}, in Eq. (5) in Case 1 (2).
Thus, the proof is established. []

Remark 2. To describe the proof simply, we construct a blowing-
up process without the condition T, < Ty or T, > Ty . We can

construct a blowing-up process with that condition; however, it results
in a more complex expression.

Example 2. This is the example of T and ¢ for MD =6, M@ = M® =
2, M® =3, M® = M©® =2 in Lemma 6 with blowing up process. We
have M = {2,3,5,6}, M =3,a=2,¢=3, A= %, 6 = 3. Also we have
H =1,H,=0,H;=0,and A] =2,H,=1,H; =0.

The blowing up process as follows.

§=1,J=0 Case?2 Ty, = (0,0,0,0,0)
S=1,J=1 Case?2 T, =(1,1,1,1,1)
§=2,J =0 Case 1(1) with u;, Ty = (1,0,0,0,0)
§=2J=0 Case?2 Ty = (2,0,0,0,0)
§=2J=1 Case?2 Ty =2 1,1,1,1)
§=3,J =0 Case 1(2) with up, Ty = (2,1,0,0,0)
§=3J=1 Case?2 Ty, =2.2,1,1,1)
S =4,0 =0 Case 1(1) with u3, Ty, = (2,2,1,0,0)
S =4,J =0 Case 1(2) with up, Ty = (2,1,1,0,0)
S=4J=1 Case?2 Ty, =(2.2,2,1,1)
§=5,0=0 Case 1(1) with uy, Ty, = (2,2,2,1,0)
§=5,0=0 Case 1(2) with up, To, = (2,1,1,1,0)

S=5J=0 Case?2 Ts; =(2,2,2,2,0)
We have 4 by T,; = (2,1,1,0,0), Ty, = (2.2,2,1,0) and T, =
(2.1,1,1,0).

5. Conclusions

We have determined the exact values for the learning coefficients of
multiple-layered neural networks with linear units, which generalizes
the result of paper (Aoyagi & Watanabe, 2005b). We use the inductive
method and a recursive blow-up method and obtain a manifold with a
resolution map of singularities.

The main theorems imply that even though model complexities are
increased, generalization errors which are expressed by the learning
coefficients A are decreased when the number of layers is increased.
This fact seems to be one of the reasons for multiple-layered neural
networks having better efficiencies for learning. For example, if the
matrix sizes are all the same H®® x H( then

A 2+2rHY  a(L—a) L+1 (H(l) — r)2
= 2 41 4L
2 ) @ _
—r?+2rH H r,olopa 2
> + ( r)

10
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if L — oo, where r denotes the rank of the probability density function
plo(X,Y), L + 1 the number of layers, and a = L(%(H“) —r) -
[%(H M — 1] + 1); here [x] denotes the ceiling function of the real
number z. The theoretical value \ shows that as the value H*)’s
becomes larger, the generalization error increases, and as the
depth of the layers increases, it decreases, when we consider
over-parameterized regimes. This seems to explain the reason
why double descent (Nakkiran, Kaplun, Bansal, Yang, Barak,
& Sutskever, 2020) occurs in machine learning. On the other
hand, its order ¢ = a(L —a)+1 — oo as L — oo, since we have
M=HY —r+1and a = HY —r when L > H®Y —r. Note that
if L < HY —r then the curve of # oscillates. Recently, these
theoretical values of the learning coefficients have been used ef-
fectively in numerical experiments such as information criteria,
the Markov chain Monte Carlo (Nagata & Watanabe, 2008a,
2008b), and model selection methods. We are also preparing
numerical experiments to compare with the theory and will
consider these applications in the future.
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